P\
/A \
y &
A

! B

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

9

// \\\
P

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTiONs ¢ 0= ROVAL A

or—— SOCIETY

The Deformation of Transversely Loaded Disks under
Dynamic Loads

G. Munday and D. M. Newitt

Phil. Trans. R. Soc. Lond. A 1963 256, 1-30
doi: 10.1098/rsta.1963.0015

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top
right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1963 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;256/1065/1&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/256/1065/1.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

[ 1]

THE DEFORMATION OF TRANSVERSELY LOADED DISKS
UNDER DYNAMIC LOADS
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Department of Chemical Engineering and Chemical Technology,
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The deformation of a thin flat metal disk under the influence of a transverse load is described, and
the response times for the particular case of a copper disk have been determined experimentally.
It is shown that the deflexion under shock loading conditions can be explained on the assumption
that deformation is due to the combined action of inertia and strain waves. Comparison is made
with the deflexion of an extensible wire under similar conditions and it is concluded that this
simple analogy could be used as a basis for subsequent analysis.

1. INTRODUCTION

Thin metal disks are extensively used in the chemical industry to protect process vessels

Y B \

— from sudden internal increases of pressure. These disks, called either bursting or rupture
< P P

> z disks, are made of a ductile material and are clamped at the periphery over a venting area
8 25 on the vessel. As the pressure behind the disk increases the material stretches and the disk
w0 5 bulges finally failing at the centre and opening up a vent for the release of pressure.

T The plastic deformation of a disk under static loading conditions has been treated ana-

) P g
= lytically by Swift (1952), Hill (1950) Brown & Thompson (1949), Gleyzal (1948), Brown

& Sachs (1948), Kirkwood & Richardson (1944), and Weil & Newmark (1955). The last-
named authors have given an analysis which appears to agree satisfactorily with experimental
data for purely plastic deformation. However, the computations involve tedious trial-
and-error integrations and Munday & Newitt (1962) have suggested a simplified approach.

Little information is available on the dynamic deformation of a disk, the most important
paper being by Kirkwood & Richardson (1944). Their treatment, however, is of limited
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2 G. MUNDAY AND D. M. NEWITT

use in determining the total time for deflexion of a real disk. The authors assume that the disk
is made of a rigid plastic material and show that the plasticity equations predict constant
stress throughout the disk, the stress being everywhere the yield stress. The resulting equa-
tion of motion is of the Lagrangian type and by a suitable Laplace transform can be solved
for certain loading conditions.

Any extension of their analysis would require the introduction of strain hardening effects
and the inclusion of stress wave propagation within the disk. The distribution of stresses
and strains associated with strain hardening complicate the analysis and it is simpler to
consider a one-dimensional system. The dynamic flexure of a wire is an example of a one-
dimensional system comparable with the deflexion of a disk. It has been studied by Cristescu
(1961) who showed that the deformation occurs through the interaction of two types of
wave travelling along the wire.

In the present paper the equations for the deformation of both wire and disk for a constant
load the direction of which is along the normal to the surface have been derived. A solution
of the equations of motion is proposed for the wire for given boundary conditions and the
deformation is described in terms of the propagation of two types of wave. It is also shown
that this analysis, in which the two types of wave are considered separately, satisfies the
general equations developed by Cristescu. In the case of the disk the equations cannot be
solved without simplification and an assumption has been made to allow for comparison
with the equations for the wire. This has suggested the possible extension of a similar
numerical method to the solution of the three-dimensional system.

To test this hypothesis experimental evidence is required and equipment has been
designed to measure the response time of a disk subjected to the sudden application of a
transverse load produced at the end of an aerodynamic shock tube. The central deflexion
of the disk is measured electronically and the variation in curvature photographically.
The experimental results obtained in this way confirm the predicted mechanism of de-
formation and have been correlated for one disk material on the basis of its initial
acceleration.

2. EQUATIONS OF MOTION

The equations of motion of a deforming body are obtained by the application of the
laws of conservation of momentum to an infinitesimal element. Such elements are shown in
figures 1 and 2, the forces exerted on them by adjacent elements being designated R and
the force exerted by the load normal to the element designated F. The resultant of these
forces causes a change in momentum of the element in the direction 4. If the variation of
the forces R and the load from element to element at every instant of time is known the
motion of the entire body can be computed.

The force vectors R are determined by the stress sustained by the element. Since the
directions of these vectors are along the principal axes, their magnitudes are given by

R; = (stress in direction z) (thickness of element) (width of element).

2-1. The equations of motion of a wire
Before we set up the equations of motion and the boundary conditions, the problem must
be defined more exactly. A convenient way of treating it is to consider a wire of square-
section of thickness £ and of initial length [ freely supported at both ends in a magnetic field
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Ficure 1. Forces acting on an element of wire. The direction of the I axis is reversed
so that 0x/0S and R, are positive.

U
‘ PdSrdeé a5

oW
Thrigs
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oW
Prdsde 95

QU _dS oW = ds
*Rrof 3 7 as) $2= 1 R,

Ficure 2. Forces acting on an element of the disk.
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4 G. MUNDAY AND D. M. NEWITT

of field strength H. A current I, varying with time, passes through the wire and a force of
magnitude HI per unit length is exerted on the wire. Assuming the bending moments are
negligible and the wire undergoes plastic deformation only, it is necessary to determine the
curvature of the wire and the stress distribution at all subsequent times.

The three vector forces are

R, = g 1?,
R, = (0, +dg,) (h+dh)?
and F = HIdS,
with direction cosines referred to the horizontal axes of
ou U dSow ow
75 s R s g

respectively. The direction of the W axis is chosen so that the gradients and the radius of
curvature are positive.

g, is the tensile stress in the element, x and W its position co-ordinates, dS its length and
R, its radius of curvature. U is the horizontal displacement of the element.

The two equations of motion are

02U ow ok .00, h* oW
12Gp sy = HIS . +G(/zx0 B a)"‘"xE'ﬁ; (2:1)
in the horizontal direction and .
2w oh  ,d0\oW R
— k2 = 2 L .
12Gp* - = HI— G(tha +h )ax —g (2-2)
in the vertical direction, where p is the density of the material and
IWN\ZTE dS
G:[H(—ax—)] == (2-3)
The dimensionless terms X = 3—;, 0= w , V= »ll[ ,
(2+4)

l
h m 7}
gzﬁ’ T:[le

are introduced, the overbar representing initial conditions, and equations (2-1) and (2-2)
are simplified by substituting

e [LH@Wox 1t ¢

©T T RWaxr T *Wox?
and m = HI,l/h?,
. . 0% 10w g 1 (1dg, 20k g 1 % jv
giving Cor = BaTne (0 ok ax) “m G5 A dy (2:5)
v 1 1 do,  20h\ dw 1 %0,
and "Gﬁ“é_ﬁ‘é(&“ 3x+hﬁx) G (2:6)

but

1 do, 28]1) o, 1 0% dw 13(0—5,2
mG33x20x - £y )

mG(a (?XJFZ@ m G
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THE DEFORMATION OF TRANSVERSELY LOADED DISKS 5

and

1 do, 28h)ﬁw o1 0% 190 05280))
(mG(?X

noleminn new e

therefore by combining these results with equations (2-3), (2:5) and (2-6) we have

0% dw 0 (0,,.,0v )
Com =9y "oy (‘né 5;}) (2:7)
Pw  dv 0 50w
and £2 (?7'2 a¢+a¢ (m a,‘k) (2.8)
where ¥ =Sl

2:2. The equations of motion of a disk

A circular disk restrained at its rim in a horizontal plane and deformed by a transverse
pressure has its principal axes of stress along the normal to the surface and in two directions
tangential to the surface, one in the horizontal plane and the other in the vertical plane.
An element, the boundaries of which are normal to these directions, is cut from the disk
by two horizontal parallel planes and two vertical planes passing through the axis of the
disk. The principal stresses are: o, the normal or thickness stress; 7, the circumferential or
hoop stress; and g, the radial or transverse stress.

The forces in the principal directions are

Ry | = Ry, = 0,hdS,
R, | = a,hrdd,
R, ;= (0,4dg,) (h+dh) (r+dr) db,
where 7 is the thickness of the element; df the angle between the meridian planes; (W, r, )

the position co-ordinates of the element; and dS its length in the vertical plane. The force
exerted by the pressure P normal to the surface is

F = PdSrdé.
and the mass of the element is phdSrdo.

By resolving the forces in horizontal and vertical directions as shown in figure 2, two
equations of motion are obtained

2U_ProW g, oW do, amy
WG =gy +G<h R +mr3) 0o hG. (2:9)
oW o, 10W da, 0k
and —her?ﬁzPr——R;/zr—~EW(/wr+h e —I—m,ﬁ) (2-10)

where W and U are the vertical and horizontal displacements of the element,

w2t as
o[-

and R, is the radius of curvature of the element in the vertical plane. A third equation,
obtained by resolving in the third direction, is redundant for reasons of symmetry.
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6 G. MUNDAY AND D. M. NEWITT
The dimensionless groups are
AP (AR
77“1_2) W= E: V*“R’

(2:11)
£=13 B [th:l

P, is a constant to be defined later and the pressure term is rewritten p = PR/k. R without
a subscript, is the radius of the disk.
The equations are rearranged in a manner similar to that for the wire, to give

o p dv 0 g, ov )
€157 1350y (95 35) 1 212
0% p dv 0 o, 0w )
and 65y = o7y oy €15 3y (213)
where ¥ = S/R.

3. THE RELATIONS BETWEEN DEFORMATION, STRAIN AND STRESS

The solution of the equations of motion requires a knowledge of the stress and strain
distribution throughout the body. The strain is fixed by the degree of deformation of the
elements and is expressed in terms of the stress in the element by relations which idealize
the behaviour of the material. These equations can be developed in mathematical terms
(Munday 1961).

3:1. The strain displacement relations

The relation between the deformation of a system and the strain in an element of it is
established by examining its history during displacement. The strain is defined by the change
in length of the element and, for large strain met with in plastic deformation, the natural
strain in the :th direction is defined by

— In (35/35),. (3:1)

That is, the strain-displacement relation is obtained from the ratio of the instantaneous
to the initial length of a line element.
For the wire

[1-+ (3w/dx)*]* .
6~ InfLLES o /0x)v‘} (3-2)
and 6, = ¢, = In (h[h). (3:3)
For the disk
¢ = In{p/(n—v)}, (34)
[1 -+ (dw/on)?]*
6 — ln{jiﬁﬁ} (3-5)
e, = In (h/h), (3-6)

where ¢, ¢, and ¢, are the circumferential, radial and normal strains, respectively (Munday
& Newitt 1962).
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THE DEFORMATION OF TRANSVERSELY LOADED DISKS 7

3-2. Stress-strain relations

The stress-strain relations for plastic deformation are expressed as two sets of equations.
The first, the equations of plasticity, relates components of stress to components of strain
in the principal directions. The two main theories, the Saint-Venant theory of plastic
deformation and Hencky’s plastic flow theory, postulate proportionality between com-
ponents of stress deviation and corresponding components of strain deviation. The propor-
tionality factor will vary from element to element, since the stress and strain must also
obey the ‘universal’ stress-strain relation. This forms the second set of equations and depends
on the material only, being independent of the configuration of the applied forces and the
shape of the body under strain.

The equations of plasticity used in this paper are

20y—03—01 = 6G,e,, (3-7)
where G, = f(04€,4)

and subscripts 1, 2 and 3 refer to the principal directions. ¢, and ¢, are the largest principal
or ‘decisive’, stress and strain, respectively, and it is assumed that the former is a unique
function of the latter. This statement takes the place of the considerably more complicated
‘universal’ stress-strain relations based on the yield criteria of von Mises and Tresca.
Equations (3-7) include, implicitly, the incompressibility equation
€,+€,+6e3=0. (3-8)
For the wire, the plasticity equations simplify to the condition of incompressibility and,
since the strains in the directions perpendicular to the axis of the wire are equal,
€y =¢€ = '—'%—ex (3'9)
The decisive strain is therefore ¢, and, since the stresses in the y and z directions can be
assumed negligible, the universal stress-strain relation is

7, = f(lel)- (3-10)
It should be noted here that tensile stresses and strains are positive.

The normal stress in the disk is assumed to be zero and the plasticity equations can be
written

2(0,/05) —1 _ & .
(olo)+1 e (3:11)
and €,+€+¢€,=0. (3-12)

The third equation involves the function relating G, to the principal stresses and strains
by the universal stress-strain relation. This function is normally expressed in terms of the
octahedral shear stress and strain but a reasonable approximation is obtained by

Gp = $(04/es)
when the decisive stresses and strains are used.
At the rim of the disk the circumferential strain is zero and equations (3-11) and (3-12)
yield g, = 20,. At the centre the circumferential and radial stresses are identical and hence
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8 G. MUNDAY AND D. M. NEWITT

it can be assumed that 0, > ¢, in most cases and the decisive stress is that in the radial direc-
tion. Similarly it can be shown that the largest strain occurs in the normal direction.

Therefore 0, =0,
(3-13)
and € = |6,
It should be remembered that the normal strain is compressive and negative and the
decisive strain only refers to its numerical value.

4. SOLUTION OF THE EQUATIONS OF MOTION

The equations of motion, can be related to the physical process of deformation by
examining each term.

(i) The left-hand side of the equation represents the acceleration of an element of unit
length dy, in which the variation in thickness ratio £ (and in the case of the disk, its position)
is taken into account.

(i1) The first term on the right-hand side of the equation represents the forces exerted
by adjacent elements. These are independent of thickness but depend upon the size of the
element (and hence, in the case of the disk, upon its position).

(ii1) The second term on the right-hand side represents the resultant force due to the
change in stress across the element depending on the change in stress, element thickness
and size.

(iv) Thelast term, in equation (2-12) for the disk, represents the force exerted by adjacent
elements in the circumferential direction which depends upon the element thickness and
the circumferential stress.

Equations (2-7) and (2-8) for the wire are hyperbolic differential equations which can
be solved by the application of the method of characteristics. A purely analytical solution
is not possible and certain simplifying assumptions have been made. These have resulted
in a clearer picture of the mode of deformation and it has been possible to assess the effects
of the factors neglected in the assumptions.

The equations of motion for the disk are similar in form to those for the wire, but the term
involving the circumferential stress precludes any characteristic solution. Here again
simplifying assumptions are made which suggest, by analogy with the wire, a possible
analytical approach.

4-1. The dynamic deflexion of a wire

Ifthe wire is made from a perfectly plastic material, so that ¢, is constant, and if the change

in thickness is neglected, the two equations of motion can be simplified to give
P o o0
ar2 oY moy?

o v g%

a2 oY may*

These can be solved graphically by the use of a single net of characteristic lines. However,
a clearer physical picture is obtained, particularly of the later stages of deformation, if only
the second of these equations is used and the horizontal acceleration is neglected, i.e.

0% 0, 0%
oz Tl ap (4-1)

and
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THE DEFORMATION OF TRANSVERSELY LOADED DISKS 9
if dw/dy is small. The initial conditions are at
7=0; w=0, dw/dr=0 and I=0

and for a wire suddenly loaded with a current pulse of constant magnitude /, the boundary
conditions are for all 7 > 0; / = I, and w = 0 at ¥ = 1. This second-order partial differential
equation has the solution:

—o =142 when (1—9¢)>ar, (4-2a)
—w = %a*[2a(1—yY)7—(1—9)?] when (1—¥) <ar, (4-2b)
where a’ = ag,/m.

Equation (4-2a) describes the motion of a free wire; hence the central section of the wire
moves initially as a free body and is flat; subsequently the flatness is destroyed by a trans-
verse wave, represented by equation (4-25), travelling from the ends with a velocity a.
The dimensionless velocity of a particle in the central section has the value 7 and has a
constant dimensionless acceleration of unity. All other particles have a velocity

—dw)dr = (1—9)/a (4:3)

and zero acceleration. Thus as the wave passes the particle its acceleration is reduced
immediately from unity to zero. When the wave reaches the centre of the wire the velocity
of all the particles is given by equation (4-3) and the acceleration is everywhere zero.

The next phase of the motion involves the deceleration of the wire until it comes to rest.
The equation of motion (4-1), is still valid but new boundary conditions imply that a ‘re-
tarding wave’ travels back along the wire bringing each element, in turn, to rest with respect
to its neighbour, so that when this wave reaches the fixed ends of the wire the velocity
of all the elements is zero. This assumes that no further wave reflexions occur. Since experi-
mental evidence shows that the later reflexions that do occur are of small amplitude this is
a reasonable approximation. However, a rigid analysis would have to take into account
the nature of the interaction of the two waves travelling in opposite directions; the velocity
of the wire when the resultant wave reaches the ends may not be zero.

The analysis of this second phase yields the solution

—0 = [2ar(1—¢) — (1—9)?]/24%, when (1—¥) < (2—ar) (4-4)
(elements not yet influenced by the second wave),
—o = [ar(4—ar) —2(¥?+1)]/2¢?, when (1—¢)=> (2—ar) (4+5)

(elements that have been affected by both incident and reflected wave).

Before a particle is subject to the retarding wave it has a velocity given by

—dw[or = (1—9)/a (4-6)
and is independent of 7. Its acceleration is zero. After the wave has passed the particle its
velocity becomes —d0jor — (2—ar)/a (47)

and is independent of . Its deceleration is then unity.
These results, translated into terms of S, g,, &, W, ¢ show that, when the wire is subjected
to a suddenly applied transverse load, it deforms under the action of a wave travelling

2 Vor. 256. A.
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10 G. MUNDAY AND D. M. NEWITT

through the wire at a speed proportional to the inverse root of the material density. The wave
starts at the fixed ends and is reflected at the centre, the wire being brought to rest when the
wave reaches the ends again. The centre of the wireisaccelerated ata constantrate dependent
on the loading, the thickness of the wire and its density and then decelerated for an equal
period of time at the same rate until it comes to rest. The maximum velocity occurs half
way through the deformation and its magnitude is proportional to the loading and inversely
proportional to the square root of the density. It is also directly proportional to the length
of the wire and inversely proportional to the square root of its thickness.

The positions of the wire in the two phases of deformation are shown in figure 3. In the
first phase the variation of stress and the change in curvature are small so that this approxi-
mate solution is reasonably accurate. During the second phase these deviations are much
greater and the discrepancies in equation (4-1) are of the order of 50 %.

W

06—
0‘4“"/'/’ D
__\\
02— >
A SO TR TN TR et TN
1 11 I 1 I 1 1 o=
0 0Z 04 06 08 y 10

, The position of the wire after intervals of 7 = 0-2,
«——, reflected inertia wave.

Ficure 3. Dynamic deflexion of a wire.
————, incident inertia wave;

This simple analysis neglects the effect of strain hardening and it will now be necessary
to consider how the increase in stress, due to this hardening, affects the subsequent motion.
The deformation of the wire by the inertia wave strains the material, and, since the wire
is held at the ends only strain initially occurs at these points. Strain requires the movement
of material and will therefore need a finite time to travel through the wire. The velocity of
this strain disturbance has been determined both experimentally and analytically by a
number of workers (Kolsky 1953 ; Craggs 1961). The velocity of the strain wave is dependent
upon the magnitude of the strain and, for most materials, large strains are propagated with
velocities lower than those for small strains.

For a wire under uniaxial dynamic load the strain is distributed by waves whose velocities,
C, depend upon the magnitude of the stress-strain gradient and

1 do,

T, (4)

=5,

where do,/de,, the tangent modulus of the material, is dependent upon the strain.

As the wire is strained by the passage of the inertia wave, the strain at the ends increases
and a succession of strain disturbances are generated. These travel through the wire at
decreasing velocities. At some stage the increase in length produced by the expanding fan
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THE DEFORMATION OF TRANSVERSELY LOADED DISKS 11

of strain disturbances is sufficient to allow the inertia wave to propagate without further
straining at the ends. No further disturbances are produced and a discrete wave will
proceed down the wire, the stress at the head of the wave being at the yield value (zero
plastic strain) and that at the tail having a value corresponding to the strain induced at the

800 I I
} ! I
| | | £|
1 | 5|
| ’ | g
l | | 5
3
I /l / |
~ j / |
/ / /
/ /
E/z
_ le le //
\:; ’ l A, /
2 |
£ |
| A
l
[
005 0~06,
0-04 |
- 0‘0?’ ’ I
o | L),
5
4 L | |
|
4 | | f
0 L | |
0 T0

distance along wire, § as fraction of half length

Ficure 4. Wave diagram. Diagrammatic representation of wave interactions in a 4 in. long
copper wire.

ends by the inertia wave. If the restraint at the ends of the wire falls, the stress within
the plastic wave is reduced by the transmission of elastic unloading waves as described
by Goldsmith (1960). When the elastic unloading wave overtakes the plastic wave, it
reduces the intensity of the stress in the wave and is reflected back towards the ends. The
repeated reflexion of elastic waves between the ends of the wire and the plastic wave
reduces the stress until the forces at the ends of the wire are compatible with the strain
requirements of the inertia wave.


http://rsta.royalsocietypublishing.org/

=

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

12 G. MUNDAY AND D. M. NEWITT

The effect of the combination of inertia and plastic waves is best explained on a wave
diagram. One of the difficulties in describing the deformation of the wire on the wave
diagram is that a three-dimensional picture is required, one dimension representing time
and the other two the spatial position of the wire. This is overcome by using the wave
diagram illustrated in figure 4 in which the wave motion is considered to take place along
the wire and the axes are chosen so that the abscissa represents the distance $ along the
wire and the ordinate the time .

The full thick line is the trajectory of the discontinuity (or inertia wave) and the groups
of fine lines represent the plastic wave. The movement of elements in the wire are indicated
by dashed lines. This diagram has been drawn on the basis of the stress-strain curve for

I I l I I

15

l | l ! 1
0 02 04 0-6

natural strain

Fieure 5. Wave velocities in copper wires: p.w., plastic wave; i.w., inertia wave.
Velocity of elastic wave = 1445 in./ms.

copper assuming that it is not affected by rate of strain. The velocities of inertia, plastic-
strain and elastic-strain waves calculated from the stress-strain diagram for copper given
by Mellor (1956) are shown in figure 5.

The velocity V of an element of the wire is given by the integrated effect of the strains
between the element and the end of the wire.

7= [ G e (+9)

The velocity of a strain wave through space is the sum of this velocity and the strain velocity,
C, namely V+C. Thus both the paths of the elements and the points of constant strain can
be calculated.

The inertia wave causing the straining travels at a velocity given by

ay = J(a./p)
and for most materials this is initially less than the velocity of propagation of strains. The
inertia wave will therefore travel within the plastic wave at an increasing velocity as the
increased stress states overtake it (4;, figure 4). If the stress-strain relation for the material is
such that the velocity of the inertia wave equals the velocity of strain propagation at some


http://rsta.royalsocietypublishing.org/

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/| \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE DEFORMATION OF TRANSVERSELY LOADED DISKS 13

particular strain, the inertia wave will finally travel within the plastic wave at a constant
velocity.

When the plastic wave is reflected at the centre of the wire (D) it is slowed down. The
wave is now travelling through material that has been strained twice, by the incident and
reflected plastic waves. Itis also travelling through material which is itself moving towards
the centre. The inertia wave, however, is unaffected by the movement of the material of the
wire and is accelerated due to the increase in stress only (4,).

Any element in the plastic wave travels away from the ends of the wire with a velocity V
(L,). When this wave has passed the element no further straining takes place between it and
the fixed end so that the particle is stationary relative to that end. A particle will start
to move again when passed by the reflected plastic wave travelling towards the end of the
wire (L,). The plastic wave continues to move along the wire until at some stage the
restraint at the end falls and the stress within the wave is reduced by the elastic unloading
waves. Since the velocity of elastic waves is approximately one hundred times that of the
plastic waves and the interaction of the two is very complicated, no attempt has been made
to depict the fading on the wave diagram.

The effect of the wave motion on the transverse deflexion of the wire depends on how
the plastic strain wave modifies the action of the inertia wave. The deflexion of the centre
is the sum of the deflexion caused by the inertia wave and the integral of the vertical com-
ponents of strain along the deformed section of the wire. Hence the transverse velocity of
the centre will depend upon the time rate of change of these two. Once the plastic wave has
been formed the rate of change of elongation remains almost constant and the velocity
component due to the plastic wave is fixed. The main change in velocity is therefore
caused by the inertia wave, and the rate at which the central transverse velocity reaches its
peak value depends upon the time taken for the inertia wave to reach the centre. The rate
of the subsequent decrease in velocity depends upon the time it takes the reflected wave to
return to the ends. As can be seen from the wave diagram shown in figure 4 the time of travel
of the incident wave is considerably longer than that of the reflected wave and therefore
the centre of the wire will decelerate more rapidly than it accelerated.

To summarize, the generation of the plastic strain wave is governed by the initial move-
ment of the central section, That is, the strength of the wave will bear a direct relation to
the initial acceleration. This in turn affects the velocity of the inertia wave which makes the
major contribution to the central deflexion. It can be seen from this discussion that the time
scale of the movement is not a function of the properties of the material alone but depends
to a large extent on the initial rate at which the centre is made to deflect.

Cristescu (1961) and Craggs (1954) have shown that equations similar in form to (2:7)
and (2-8) derived for the general case of motion of elastic-plastic wires can be solved using
the method of characteristics. The types of waves represented by the characteristic equations
have velocities

€, = +£J(a/m),
_ 1 d(ff/m)} d(g,/m) (4-10)
Cz = i/{gz du@) =tV g,
(since ¢, = —2In¢), where C| is the velocity of a transverse wave and C, is the velocity of a

longitudinal wave. These waves are identical with those discussed above, being the inertia
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14 G. MUNDAY AND D. M. NEWITT

and stress waves, respectively. Cristescu suggests two methods for the approximate integra-
tion of the equations of motion along these characteristics the simplest of the two involving
the assumption that C, = C,.

4-2. The dynamic deflexion of a disk

It has been shown in §4-1 that the equations of motion for a wire can be solved. The exten-
sion of this solution to the disk is not sosimple. The introduction of bi-axial states of stress and
strain, which determine the velocity of the plastic strain waves through the disk, excludes
the use of the same techniques. If, however, strain hardening effects arc ignored the analysis
reduces to the determination of the inertia wave as described by Kirkwood & Richardson
(1944). Then, by analogy with the wire, it should be possible to calculate the deformation
of recal materials possessing strain hardening plastic properties if the velocity of the strain
wave was known.

If the change in disk thickness is assumed negligible and strain hardening is neglected,
the stress everywhere will have the single value, o, the yield stress. Then equation (2:13)
simplifies to

2
v oyl 0 ( (?a))_l p o (4-11)

T T pen oy \Tay) " po g
where p, == PyR[h and P, is the magnitude of the suddenly applied pressure load. Theinitial
conditions are: at7 == 0; p - = 0, w and dw/d7 == 0. The boundary conditions are: at 7 > 0:

p=poand w=0aty =1

and the solution is —w=—312 when ¥ < (1—ay7) (4-12)

e 1 1Y) :
and =g {T g (T—»-a(;—--) } when ¢ > (1—a,7), (4-13)
where ag = o/po-

Equation (4-11) differs from that obtained for the wire by the term a,/p,(1/7) dw/dy.
This term is introduced into the equation of motion when considering the forces acting in
an element in the radial direction. Since the element approximates in shape to a trapezium,
the force acting in one direction is greater than the opposing force by a factor involving
the increase in arc length, drdf. In other words, this term expresses the three-dimensional
nature of the disk.

The solution is similar to that for the wire in that the transverse or inertia wave has a
velocity given by a, - /(0o/p,) and the central movement is equivalent to the acceleration
of a free body subjected to sudden loading.

Once the inertia wave reaches the centre of the disk at 7 == 1/a, the analysis breaks down
and new boundary conditions must be applied. The disk could be assumed to be brought to
rest by a retarding wave in a manner similar to that for the wire. The inaccuracy of such a
solution has been indicated already and it is not attempted here.

If the strain hardening effects are included the propagation of strain waves must be
considered. Craggs (1952) has attempted an analysis of the propagation of strain waves in
circular membranes and shows that the velocity can be calculated from the equations of
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THE DEFORMATION OF TRANSVERSELY LOADED DISKS 15

motion, plasticity and strain-displacement. He shows that, in the elastic case the one-
dimensional strain velocity for a wire, given by

1 do,
Cr = A/ (p de )
must be multiplied by the factor [1—22]2,

where A is Poisson’s ratio, to give the radial strain velocity.

A similar modification for bi-axial states in the plastic region is required. A simple
multiplication factor cannot be used and the complete analysis must be performed. Hence
the scheme outlined for the wire cannot be used here. However, the analogy is reasonably
close and similar conclusions can be drawn. If the equations (2-12) and (2-13) are rearranged
by introducing the term B? = £y, we have

(? V i} g, v\ B?dw o
By (32 ) + % 75— 2 4-14
w\Zpa) Tt (14
P20 0 g, dw\  B? dv
2 2 o .
and —Bry = M(B ﬁ09¢)+§ 7 (4-15)
If these are compared with equations (2-7) and (2-8) it can be seen that they are of the same
form with B=¢
and 0,/po = 0,/m

but include a term o,/p, involving the circumferential stress. Hence it could be surmised
that the deformation takes place in a manner similar to that of the wire and the velocities
of the inertia and plastic strain waves would be approximated by

Ci=J(nip) and Cy—=x [HEHP),
where E = —2InB

(compare equations 4-10). Under the conditions mentioned above, the maximum stress
and strain are in the radial and normal directions respectively so that the decisive stress-
strain criterion requires 7. = f(—¢,).

However §=exp(e,), B=rnexp(2,)
so that B and hence E, are functions of both strain and position.

Thus it is conceivable that similar techniques can be applied to both wire and disk, but
that in the latter case the position of the element must be considered. Although a solution
has not been attempted an inspection suggests that the deflexion of the disk will depend to
a very large extent on its initial movement. That is, for a given material the deformation
will depend upon the magnitude of the pressure loading and the corresponding initial
acceleration of the disk.

5. EXPERIMENTAL

5:1. Equipment
A disk can be subjected to a sudden pressure loading by using a shock tube. This consists
of a tube of uniform cross-section divided into two compartments by a diaphragm. Initially

one compartment contains gas at high pressure and the other gas at ambient pressure
and the system is in thermal equilibrium. When the separating diaphragm is ruptured a
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16 G. MUNDAY AND D. M. NEWITT

state of disequilibrium is set up and the wave formation shown in the x-¢ diagram in figure 6
is generated. Assuming the diaphragm disintegrates instantaneously at time ¢ = 0, a plane
shock wave followed by a contact surface is transmitted into the low-pressure section and a
rarefaction wave is simultaneously propagated into the high-pressure section.

| high pressure | low pressure }

P N
- ! reflected
< . 'shock

contact
surface shock wave
—— — .__/__ ?—..r —_— e

|
RN
/% -
= | '

—_— -

(o]

L

L

=t

|

| S
t=t, A

Ficure 6. Wave formation and pressure distribution in shock tube.

The low-pressure gas is initially stationary and the shock consists of a discontinuity of
pressure, temperature and particle velocity travelling through it. When the shock is reflected
off the fixed end of the tube the gas is brought suddenly to rest and an instantaneous increase
in pressure is obtained. The pressure remains constant until some disturbance is generated
by the interaction of the contact surface and either the reflected shock or the reflected
rarefaction wave.

The contact surface defines the boundary between the gas initially in the low-pressure
section, which is being compressed, and that in the high-pressure section, which is being
expanded. Hence there is a discontinuity of temperature in this plane but the velocities
and pressures in the two gases are identical.

Shock tube theory (Glass, Martin & Patterson 1953) has been developed to describe the
phenomenon precisely. For a given initial pressure ratio across the diaphragm the
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THE DEFORMATION OF TRANSVERSELY LOADED DISKS 17

magnitude and duration of the pressure loading on the closed end of the shock tube can be
calculated for different tube lengths and the apparatus can be designed to cope with time
intervals involved with disk deflexion over a range of pressure loads. The pressure loading

is calculated from
a+2—pq

—_ 51
P (L+apy,) pro (5:1)
B 1 B /g ’
and b= Pre ‘1*‘(],1;“1) (Z*/‘l;)_pl) } ) (5-2)
Yk S T
where “= b= 5y
_ Py pressure loading
P51 = P, initial pressure ’
_ P, _ high pressure
bu = P, initial pressure’
_ P, initial pressure
b= P,  pressure behind shock’

y = ratio of specific heats.

The duration of the constant-pressure load at the closed end depends upon the shock-tube
pressure ratio, p,;, and the lengths of the high- and low-pressure sections of the shock tube.
Changing these three parameters alters the system of waves generated in the tube and in
particular alters the interaction of the system with the reflected shock wave. These inter-
actions are illustrated in figure 7. The diagrams show three shock tubes which have high-
pressure sections of the same length and are operated at the same pressure ratio but with
low-pressure sections of increasing length. In the first case (a) the reflected shock wave meets
the contact surface first and a second shock is produced which reaches the closed end a time
Aty after the first shock wave reflexion. In the third case (¢) the reflected rarefaction wave is
diffracted at the contact surface before interacting with the reflected shock wave. The
disturbance at the closed end, which occurs a time Az, after the initial shock-wave reflexion,
is the twice diffracted rarefaction wave. The second case (b) represents the intermediate case,
which we have termed triple interaction, in which all three waves interact at the same
time.

The duration of pressure loading can be assumed to be at least equal to the time interval
At, as long as the region LM N on the wave diagram is undisturbed by any waves. Az is a
function of p,; and x, ;, , the length of the low-pressure section, so that the constant pressure
duration can be plotted against p,, for several values of ¥ , as long as provision is made to
discount pressures and tube lengths at which the wave formations shown in figure 7 (b)
and (¢) occur.

Triple interaction occurs when the low-pressure length is given by

X 1 1
X = ¢ .
ot Wm]/ [Wu* Wm] ’ (53)

3 Vor. 256. A.
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(c)

X

Ficure 7. The effect of low-pressure section length on wave interaction. S, shock wave;

C, contact surface; R, rarefaction fan; P, compression fan.
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THE DEFORMATION OF TRANSVERSELY LOADED DISKS 19
where X =15 [*np.»
T, = 2p345
X, = 2(a—1)(1—ph,) p34*,

2+ (a—1) p1p
W21 = s
[(e+1) (x +P12)P12]%

Wt =B(1-+apy) and  pgy = p1apo-
X therefore depends on the pressure ratio p,, only and as p,, - 1, X — 1.

500

o 100 =
= ~,
=~ =
o =
> =)
g Al
ﬁ-‘ =150 .
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g C T 2
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Ficure 8. Shock-tube performance. The low-pressure section lengths in feet are indicated
on the curves.

Figure 8 has been constructed on this basis to represent the field of application of a shock
tube in terms of the pressure ratio p,;, the duration of constant pressure at the tube end,
At,, and the tube length. Thus an operating point lying on the curve for a given low-
pressure length and above the critical pressure for triple interaction will represent the shock-
tube pressure ratio required to produce a given pressure load Py with a duration at least
equal to At,.

(a) The shock tube

The shock tube is illustrated in figure 9. The high-pressure section is 6ft. long and the
low-pressure section 4 ft. and both are made out of 6in. internal diameter steel tubes as
specified by B.S.1378. Flanges 12in. in diameter by 1}in. thick are expanded on to the
four ends in accordance with B.S. 1740. The assembly has been hydraulically tested up to
7001b./in.2 (g). The dimensions have been dictated by considerations of space, but the low-

pressure section can be lengthened without reducing the effectiveness of the design.
3-2
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20 G. MUNDAY AND D. M. NEWITT

Pairs of windows are fitted in the low-pressure section at points B, and B, and two bosses
have been welded on at 4. The windows are used to time the passage of theshockand provide
a signal for triggering the equipment used to examine the deflexion of the disk. The bosses
at 4 are fitted with insulated terminals and a resistance wire is attached between them inside

- 6ft. : 4ft,

6111’1 -l- - - - - - - 1- ]-A- - {331_ - B;_)( -|- . ‘l_
T“ J- i i / A T 7in,
¢ pAftBinc— 2ft— T

high pressure section low pressure section

A~

Ficure 9. Shock tube.

09’
photo-cell
Ficure 10. Deflexion gauge, perspective drawing.

the tube. The wire is placed so that it touches the diaphragm separating the two sections and
it is heated by an electrical current to break the diaphragm at the required pressure.

The separating diaphragm which is made of cellulose acetate is held in a capsule which
is mounted between the two tubes and its design is similar to that used in commercial
bursting disk holders.
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Froure 12. High-speed ciné recordings of 6 in. diameter copper disk, 0-0027 in. thick
(¢a. 200000 pictures per second; approximate time intervals in microseconds).
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Ficure 14. Single flash photographs of 6 in. diameter copper disk, 0-002 in. thick.
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(b) Deflexion measurement

The deflexion of the test disk on the impact of the shock wave was examined by two
methods. The central deflexion was measured electronically by the use of a beam of light
and a photocell, and photographic records were made of the changing shape of the disk.

To measure the central deflexion while the pressure is applied, the disk must be held on
the end of the shock tube and the position of'its centre recorded continuously. A perspective
drawing (figure 10) of the deflexion gauge head indicates the optical method employed.
A light beam produced by a source, 7, and a condenser, C|, is reflected from a mirror, M,
through a slit, S, and across the face of the test disk. The beam then enters a second slit,
Sy, 18 reflected from a second mirror, M,, into a condenser, C,, to be focused on a screen.
A photomultiplier observes the image of the first slit on the screen. As the disk deflects the
light beam is partly obscured and the output from the photomultiplier is reduced propor-
tionally with the disk deflexion. The output from this is fed direct to a Solatron (type CD 513)
oscilloscope and the trace, produced by the changing light intensity, photographed. The
oscilloscope time base was triggered from the second pair of windows in the shock tube.

The test disk holder, shown in figure 11, was designed to minimize the extent to which the
disk was obscured. The clamping plate, RR, is split in two and the disk, D, is held in the
backing plate, BP, by a thin ring, SR, which applies an even pressure over the entire rim of
the disk. This ring is only % in. thick and provides the only obstruction to the light beam
used in measuring the deflexion. The inner edge (point 4 in the drawing) of this ring is
radiused to prevent it cutting the disk and causing shear at the edges. The mirrors, light
source and photomultiplier are housed in tubes fitted to the face plate, FP, which holds the
disk assembly onto the open end of the shock tube. Three assemblies have been made so that
disks of 2, 4 and 6in. diameters can be tested.

Further information on the deflexion history of the disk was established photographically
by using cinematographic, multiple image and single flash methods. Owing to the visual
obstruction of the disk by the clamping plate the photographs were taken at an angle to the
tube. The disk was blackened and a white line painted along its vertical diameter to give a
clear picture of the profile.

A Courtney-Pratt high-speed camera, was used to obtain records for observational
purposes; a sequence of photographs taken from such a record is shown in figure 12,
plate 1. The sampling technique used in this camera requires a lens which moves relative
to both the photographic plate and the object, and hence the recorded image appears to
have an additional movement which introduces a change of perspective for each picture.
This distortion makes measurements difficult and to supplement these photographs a flash
system was devised whereby a true record of the deformation could be determined.

A series of flashes of short duration illuminates the face of the disk and, by means of a lens,
produces a multiple image on a stationary film. This process is carried out in the dark and
the flash is triggered to coincide with the initial movement of the disk. The flash source
consists of a Ferranti cathode-ray tube (type CL 73) running at 25kV and held at cut-off
by a battery grid bias. A short train of pulses, initiated by the trigger, is fed to the grid. The
face of the c.r.t. is illuminated for the duration of each pulse and parabolic mirror focuses
the light on the disk. Ilford HPS film and an f/1-0 lens enabled a record of sufficient intensity
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22 G. MUNDAY AND D. M. NEWITT

to be made. The electronic equipment is briefly described by Munday & Tyley (1958).
An example of the multiple image photograph is shown in figure 13, plate 1. The true
deflected shape of the disk shown in figure 15 was obtained from the multiple-flash photo-
graph by setting up the camera with a light source so that an image was projected on to a
plane in the axis of the tube and at the same angle from which the negative was obtained.

_'s !
1
d of éﬁ _
en
shocl?tube ap
: 4 <7
b/
RR 1¥z72
NN’
disk capsule )

vertical axis

SH

Ficure 11. Detailed design of deflexion gauge and disk holder.

The correct angle was determined by adjusting the angle of projection until the image of the
edge of the flat part of the disk exactly coincided with a circle of the same diameter drawn
on a sheet of paper held perpendicular to the plane of projection. The deflected positions
were traced out and a final check on the accuracy of the projection made by comparing
the final position with the true shape of the deformed disk. Figure 16 shows the experimental
arrangement for taking the photograph and illustrates how the projection was obtained.
The photographs in figure 14, plate 2, were taken from a series of experiments in which
similar disks were loaded to the same pressure. A spark, initiated by the contact made
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THE DEFORMATION OF TRANSVERSELY LOADED DISKS 23

between the disk and a fine wire probe, illuminated the disk. The camera shutter was per-
manently open so that the instant of exposure could be chosen to coincide with a given
displacement of the disk.

Ficure 15. Disk deflexion as projected from figure 13.

__,_Tnirror

N eht.
1 unit
25kV

!condenserl

pulse
-~ |generator

plane for -
film projectulm

camera or
projector

amplifier

Ficure 16. Equipment for multiple flash photograph.
(¢) Disk material

The shock tube design permits the dynamic testing, to bursting pressure, of copper disks
up to 6in. in diameter and up to 0-008in. thick. To obtain a maximum loading area over
the full diameter a 9in. width foil is required. The only material available in the smaller
thickness ranges was an electro-deposited copper foil, manufactured by the Royal Mint
Refinery, which is specified as of uniform thickness to close limits across the width and hard-
ness equivalent to rolled copper sheet. The thickness, as represented by the mass per unitarea
figure of 0-735, 1:470 and 2-000 oz./ft.%, are nominally 0-001, 0-002 and 0-0027 in. respec-
tively. Deviations of up to 49, were found and the actual thicknesses were 0-0013, 0-0024
and 0-0032in. All the disks were closely packed in containers and annealed to 500 °C.

5:2. Performance of equipment

All but one of the preliminary experiments discussed here were performed with a shock
tube pressure ratio of 2-88. The propagation of shock wave, contact surface and rarefaction
wave at this pressure have been calculated and are plotted on the wave diagram in figure 17.
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24 G. MUNDAY AND D. M. NEWITT

The shock wave, § and the contact surface, C, travel at velocities 1300 and 430 ft./s, respec-
tively. The rarefaction wave, R, travels through the high-pressure section with a leading
velocity of 1100 ft./s and is reflected from the end but does not interfere with the region of
constant pressure. This is terminated by the shock wave reflected at the contact surface.
The loading pressure is 24-71b./in.2 (g) and its duration is 8 ms which, as the results
show, is more than sufficient for the full deflexion of the disk. The calculation of the magni-
tude of the pressure behind the reflected shock wave is based on the assumption that the

| |
o 5 4 3 2 1 1 2 xft. 4

Ficure 17. Wave system in shock tube at a pressure ratio of p,, = 2-88.
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Ficure 18. Pressure fall due to disk movement. , Pressure difference across disk;
— — —, central deflexion. 4 in. diameter x 0-002 in. thick copper disk loaded to 24:71b./in.? (g).

kinetic energy of the moving gas is all converted to pressure energy as the gas is brought to
rest at the wall. In the case of a deflecting disk this is not so and, if the velocity of the disk
is comparable with the velocity of sound in air, the pressure will fall. Results show that the
disk centre moves at a speed of about one-quarter of the speed of sound in air and it has been
necessary to determine the effect of this movement of the constant pressure load. Meyer
(1957) has investigated the impact of shock waves on a free wall and has shown that the
pressure difference across the wall can be calculated. Using a simplification of Meyer’s
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THE DEFORMATION OF TRANSVERSELY LOADED DISKS 25

theory to give an approximate measure of the loading, the experimentally recorded velocity
of a disk has been used to calculate this fall in pressure, and the result is plotted in figure 18.
In practice the pressure never falls as low as the calculated value since the entire cross-section
of the disk is not moving at the velocity of its centre.

6. REsuLTs

The photographs shown in figures 12 to 14, plates 1 and 2 indicate that the disk deforms
as described in the theoretical section, the central section of the disk remaining flat and a
transverse discontinuity travelling in from the rim towards the centre. The movement of
the centre of the disk is found to coincide with measurements made using the deflexion head
as shown in figure 20 ().

13 T T 1T N ol
— max dynamic deﬂexiowx—""x e
R ¥
10 X
b D=6in. N o~
s L 7=0-001 in. g
= | A p &
=}
;[ / :
E 05— x/ deflexion 8
[}
- ></ B _3 >
B 12
| velocity -1
| I Lo o
0 200 400 600 800 1000

time (us)

Ficure 19. Oscilloscope record and measured values.

4 VoL. 256. A.
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26 G. MUNDAY AND D. M. NEWITT

The measurement of the deflexion of the centre of the disk yields the most reliable quanti-
tative information on the dynamic deformation. Table 1 lists data obtained from five
experiments with disks of radius 2 and 3in. A typical oscilloscope record from one of these
experiments is shown in figure 19 together with the trajectory of the centre (curve 4) and

12
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- — 0.4 09)/ +/ 142
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| /+ o 219 oooabz | | [ |1 |
- //4-0//,’ 0(25 ~om2 146 —
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Ficure 20. Deflexion and velocity plots for four disks. +, Deflexion; O, velocity.

run no. R (in.) k (in.)
(a) Av 2 0-0027
(b) A 2 0-002 (A multiple flash record)
(¢) A m 2 0-001 (disk burst)
(d) At 3 0-0027

the variation of velocity (curve B) measured from it. Results from the other four experiments
are shown in figure 20.
The individual experiments are correlated by the use of the dimensionless parameters

- Jh)e -

W,

wi

and

U_.I_«/fi
- WENAY

velocity (in./ms)
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where 4, is the initial acceleration; W, the central deflexion; W the maximum dynamic
central deflexion; and V is the velocity of the centre. The variation of deflexion and
velocity as a function of time is shown in figures 21 and 22. It can be seen that a good
correlation has been obtained.

As shown in figure 23 the shape of the disk in its final deformed position is almost identical
for all the disks irrespective of thickness, diameter and loading. The co-ordinates have been

TABLE 1. DYNAMICALLY LOADED DISKS
final central

initial deflexion (in.)
acceleration ‘ A \
thickness (in.) pressure in.[(ms)? maximum equivalent
run radius A -~ load ————+*———  velocity equilibrium
no. (in.) nominal actual  (Ib./in.%(g)) measured free plate (in./ms) Wy loading
Am 2 0-0010 0-0013 247 10-4 22-8 55  disk burst  0-746
A 2 0-0020 0-0024 247 9-2 124 37 1-14 0-502
Av 2 0-0027 0-0032 24+7 40 9-3 1-5 1-15 0-420
A1 3 0-0027 0-0032 247 6-1 93 2-9 1-69 0-538
Avi 3 0-0010 0-0013 8-82 53 81 2:5 1-24 0-500
I
1' 0 — « X/‘P*U‘f").'—'ﬂ"‘f’—
o — e Al » ]
2 | aAm .Iﬁ‘r N
tt;:-"j — DAIV / ~
FS — +AV /42)( ~
(5] i~ . —
= 05 x,AV1 *&
2 A ]
8 I 1",_] -
£ F W n
— Q.XW ~—
AN S S S A
0 . 05 10 15

dimensionless time, &/(4,/R) = 7,

Ficure 21. Correlation of disk deflexion.
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Ficure 22. Correlation of disk velocity.
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28 G. MUNDAY AND D. M. NEWITT

plotted in the dimensionless form W* /W and 5, where the asterisk represents the final position
and the subscript 0 the pole of the disk. The relation between height and radial position is

WH[WE —1—gh. (6-2)

W§ R varies from 0-39 to 0-5 and appears to be directly related to the initial acceleration.
The shape of a disk loaded slowly to a comparable pressure is also shown in this figure.

Ficure 23. The disk profile after dynamic loading.
— ——, equilibrium loading.

s WHWS = 1~ (r|R);

7. CONCLUSIONS

The theoretical considerations of the problem of dynamic deflexion of a disk leads to
the conclusion that, for high rates of loading, two types of wave must exist to allow for the
deformation. These are the plastic strain and inertia waves. The former enables the disk to
stretch so that it may deform by a mechanism involving the latter. These two waves are
interdependent but travel at different speeds which depend on the state strain in the material.
The strain wave also affects the state of stress in the disk so that the nature of the interaction
between the waves is some function of the many possible variables. While this implication
makes it difficult to calculate the deflexion rate from the equations of motion the analysis
does lead to a useful correlation of experiments for a particular material. Analogy with an
extensible wire under similar conditions of loading suggests that the initial acceleration of
the disk plays a controlling role and if it could be related to the stress-strain laws of the
material the deflexion could be specified for all materials on a single curve.

In the experiments with annealed copper the discontinuity in curvature which marks
the inertia wave during deformation is clearly seen. The velocity of the inertia wave, as
measured from the photographs, varies from 3 in./ms near the rim to 7in./ms at the centre.
These values agree with theoretical predictions for a local strain increase from 0 to 0-3.
It can be shown that local strains of this order of magnitude are required to produce the
deformation observed.

Strain waves cannot be discerned in the photographs but their presence is implied by the
nature of the motion of the disk, since the incident and reflected inertia waves have different
velocities. The movement associated with the reflected wave is small and cannot be observed,
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but the difference between the rates of acceleration and deceleration of the disk centre can
only be explained by an increase in strain as shown in the wave diagram in figure 4. Further,
the two rates can be measured from figure 22 and it is found that the reflected wave moves
twice as rapidly as the incident one. Again this is in keeping with theoretical predictions
since the velocity of the inertia wave is doubled by an increase of strain of about 0-3.

Quantitative information is given in the deflexion and velocity plots shown in figures 21
and 22. Their dimensionless nature suggests that the deflexion is dependent upon the initial
acceleration and disk radius. Discrepancies towards the end of the deflexion process
indicate that other factors are involved. At this stage it may be concluded that the rate of
deformation of a copper disk is such that the initial acceleration is about half the theoretical
value for the equivalent free plate.

The later stages of the disk deflexion cannot be perceived in the individual photographs
shown in figures 12 to 14, but when the high-speed film records are projected the disk is
observed to slow down and the centre appears to ‘bounce’ or oscillate. This oscillation is
partially associated with the dip in the centre of the disk visible in figure 14 (d), but it is
suggested that this is largely the result of further reflexions of the inertia wave. These reflex-
ions account for the presence of the second velocity peak in figure 22.

The shape of the disk in its final deformed position is given by an equation which is
identical with the theoretical one for the disk shape at the instant when the inertia wave
reaches the centre. This equation has been obtained by an analysis in which strain-hardening
effects have been neglected and hence it may be surmized that the inertia wave plays a
major part in the deformation of the disk. The propagation of the plastic wave then only
modifies the time scale of the process in some non-linear manner.

The aim of this work was to investigate the rate of deflexion of bursting disks used to
protect industrial installations against the effects of rapid increase of internal pressure.
The response of these disks to shock pressure loadings has been established and the mode of
deformation described. It is suggested that the experimental techniques may well have
importance in the field of plastic deformation at high rates of strain since they have certain
advantages over orthodox methods. Straining rates in the range 10° s~! can be attained and
the magnitudes of the strains to be measured are large. Similar techniques can also be
used to determine the bursting pressure of disks under these conditions. Studies of rate of
crack propagation and the dependence of failure on the velocity and therefore magnitude,
of strain waves also lead to valuable information on the ultimate strength of materials.

The authors would like to thank J.Langham Thompson and Co., for the loan of a
Courtney-Pratt high-speed sampling camera, and Mr L. R. Tyley for his assistance in
much of the photographic work.
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Ficure 12. High-speed ciné recordings of 6 in. diameter copper disk, 0-0027 in. thick
(ca. 200000 pictures per second ; approximate time intervals in microseconds).
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Ficure 13. Multiple flash photograph of 4 in. diameter copper disk, 0-002 in. thick.
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Ficure 14. Single flash photographs of 6 in. diameter copper disk, 0-002 in. thick,
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Ficure 19. Oscilloscope record and measured values.
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